Title:

Sampling and the complexity of nature

Subtitle:

Assessing, testing, and challenging the computational power of quantum devices

Author(s):

Hangleiter, Dominik

Year of publication:

2021

Available Date:

2021-01-14T14:17:25Z

Abstract:

Randomness is an intrinsic feature of quantum theory. The outcome of any measurement will be random, sampled from a probability distribution that is defined by the measured quantum state. The task of sampling from a prescribed probability distribution therefore seems to be a natural technological application of quantum devices. And indeed, certain random sampling tasks have been proposed to experimentally demonstrate the speedup of quantum over classical computation, so-called “quantum computational supremacy”.

In the research presented in this thesis, I investigate the complexity-theoretic and physical foundations of quantum sampling algorithms. Using the theory of computational complexity, I assess the computational power of natural quantum simulators and close loopholes in the complexity-theoretic argument for the classical intractability of quantum samplers (Part I). In particular, I prove anticoncentration for quantum circuit families that give rise to a 2-design and review methods for proving average-case hardness. I present quantum random sampling schemes that are tailored to large-scale quantum simulation hardware but at the same time rise up to the highest standard in terms of their complexity-theoretic underpinning. Using methods from property testing and quantum system identification, I shed light on the question, how and under which conditions quantum sampling devices can be tested or verified in regimes that are not simulable on classical computers (Part II). I present a no-go result that prevents efficient verification of quantum random sampling schemes as well as approaches using which this no-go result can be circumvented. In particular, I develop fully efficient verification protocols in what I call the measurement-device-dependent scenario in which single-qubit measurements are assumed to function with high accuracy. Finally, I try to understand the physical mechanisms governing the computational boundary between classical and quantum computing devices by challenging their computational power using tools from computational physics and the theory of computational complexity (Part III). I develop efficiently computable measures of the infamous Monte Carlo sign problem and assess those measures both in terms of their practicability as a tool for alleviating or easing the sign problem and the computational complexity of this task.

An overarching theme of the thesis is the quantum sign problem which arises due to destructive interference between paths – an intrinsically quantum effect. The (non-)existence of a sign problem takes on the role as a criterion which delineates the boundary between classical and quantum computing devices. I begin the thesis by identifying the quantum sign problem as a root of the computational intractability of quantum output probabilities. It turns out that the intricate structure of the probability distributions the sign problem gives rise to, prohibits their verification from few samples. In an ironic twist, I show that assessing the intrinsic sign problem of a quantum system is again an intractable problem.

Identifier:

Language:

English

Keywords:

sampling

quantum computing

Quantum Monte Carlo

sign problem

verification

quantum computational supremacy

quantum computing

Quantum Monte Carlo

sign problem

verification

quantum computational supremacy

DDC-Classification:

539 Moderne Physik

006 Spezielle Computerverfahren

519 Wahrscheinlichkeiten, angewandte Mathematik

006 Spezielle Computerverfahren

519 Wahrscheinlichkeiten, angewandte Mathematik

Publication Type:

Dissertation

Department/institution:

Physik

Supplemental Research Data: